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Background: The potential effects of global climate change on allergenic pollen
production are still poorly understood.

Objective: To study the direct impact of rising atmospheric CO2 concentrations
on ragweed (Ambrosia artemisiifolia L.) pollen production and growth.

Methods: In environmentally controlled greenhouses, stands of ragweed plants were
grown from seed through flowering stages at both ambient and twice-ambient CO2

levels (350 vs 700 �L L�1). Outcome measures included stand-level total pollen
production and end-of-season measures of plant mass, height, and seed production.

Results: A doubling of the atmospheric CO2 concentration stimulated ragweed-
pollen production by 61% (P � 0.005).

Conclusions: These results suggest that there may be significant increases in
exposure to allergenic pollen under the present scenarios of global warming. Further
studies may enable public health groups to more accurately evaluate the future risks
of hay fever and respiratory diseases (eg, asthma) exacerbated by allergenic pollen,
and to develop strategies to mitigate them.
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INTRODUCTION
Global environmental change has re-
ceived significant attention in the
fields of conservation biology, agricul-
ture, and economics. Only recently,
however, has research begun to ad-
dress how a changing global environ-
ment may affect public health.1 Out-
breaks and expansion of diseases
transmitted by vectors sensitive to cli-
matic shifts (eg, malaria, dengue fever,
and equine encephalitis) have been
linked to environmental change.2–4

Thinning of the ozone layer is ex-
pected to increase the incidence of
melanomas.5 Recent studies have also
shown a link between warming trends

within the past 50 years and the phe-
nology and abundance of allergenic
pollen released by a number of Euro-
pean tree species.6,7 However, only
limited data are currently available to
evaluate the direct effects of rising at-
mospheric CO2 concentrations on pol-
len production by allergenic plants and
its potential impact on public health.8

Human allergic responses to the pol-
len of certain plant species (hay fever,
allergenic rhinitis, pollinosis) is a seri-
ous environmental health issue.9

Aeroallergens, including pollen, also
play a role in the exacerbation of asth-
ma.10 The prevalence of both hay fever
and asthma has increased significantly
in recent decades.11,12 Little research
has been devoted to understanding
how various components of global en-
vironmental change influence aller-
genic pollen production and, thus, the
potential for pollen-related disease.

An increase in the concentration of
atmospheric CO2 is one of the most
certain predictions of climate change
models. CO2 concentration has in-

creased by 29% since preindustrial
times, and is expected to double again
sometime between 2050 and 2100.13

Increased CO2 concentrations stimu-
late plant net photosynthetic rate,14 in-
crease water use efficiency,15 decrease
carbon loss to dark respiration,16 and
alter phenology17 and allocation pat-
terns.18 The net result of these re-
sponses is that plants grown in CO2-
enriched atmospheres generally grow
faster and are larger at maturity, al-
though the magnitudes of growth and
physiologic enhancements vary con-
siderably with environmental condi-
tions and species identity.19,20 Whereas
significant CO2-induced changes to re-
production have been documented,21,22

nearly all studies to date have focused
on the responsiveness of female repro-
ductive structures (ie, flowers, fruits, and
seed). In one recent study, Ziska and
Caulfield8 found that exposing ragweed
plants to the higher CO2 concentrations
predicted in the year 2100 doubled the
quantity of pollen produced.

Ragweed (Ambrosia artemisiifolia
L.) is a plant common to roadsides and
disturbed habitats throughout most of
the United States and Canada.23 It is
dioecious, with male and female flow-
ers born on distinct axillary branches,
allowing for independent control of al-
location to sexes.24 Throughout its dis-
tribution, ragweed pollen is one of the
most abundant aeroallergens in late
summer and fall, and it is one of the
primary causes of seasonal pollen al-
lergy in North America.25 Conse-
quently, ragweed pollen and specific
allergens extracted from it have been
used in many clinical studies, and the
biochemistry and genetics of ragweed
allergens and their impacts on the hu-
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man immune systems are well under-
stood.26,27

This study investigates the direct
impact of rising CO2 concentrations on
pollen production in experimental pop-
ulations of ragweed. The results will
be used to more accurately evaluate the
future risks of hay fever and respira-
tory disease exacerbated by allergenic
pollen, and to develop strategies to
mitigate them.

MATERIALS AND METHODS
To study pollen production by ragweed
populations in elevated CO2 atmo-
spheres, seeds of Ambrosia artemisi-
ifolia L. were grown to reproductive
maturity in controlled-environment
glasshouses. Seeds were initially col-
lected from wild populations in Wood-
stock, Illinois. Seed were sown into 12
total 30-L growth containers (50 �
40 � 15 cm). Soil in each container
was composed of a 4:3 mix of Pro-Mix
compost (Red Hill, PA) and washed
sand (Quickrete Co, Atlanta, GA).
Containers were fertilized weekly with
500 mL of 20:20:20 NPK Peter’s So-
lution (Allentown, PA), and watered
daily. Day/night temperatures were
maintained at 26/21° C and ambient
glasshouse light levels were approxi-
mately 70% of full sun.

Containers were randomly assigned
to two blocks, each containing two
modules maintained at either ambient
350 �L L�1) or double ambient (700
�L L�1) CO2 concentrations (ie, three
containers per growth module). Thirty
plants were established in each growth
container and arranged in a regular
grid. This resulted in a density of 150
plants m�2, a density commonly ob-
served in natural field populations.28

To minimize any edge effect, only the
central 12 plants per container were
measured and used in analyses.

Pollen was collected and pooled
from the 12 central plants in each stand
after 84 days of growth, during the
peak of the flowering season. All pol-
len bearing shoots on each plant were
vigorously shaken within a large Te-
flon-coated (DuPont, Wilmington, DE)
funnel that opened at its narrow end
into a collection vial filled with 50 mL

of ethanol. To estimate pollen concen-
tration, a 5-mL sample of well mixed
pollen-ethanol solution was transferred
to a glass vial and dried for 24 hours in
an oven. The dried pollen was then
mixed with 4 mL of concentrated salt
water (Instant Ocean, Mentor, OH) and
subsamples of this solution were ana-
lyzed for pollen particle number and
size using a Coulter Z-series Particle
Count and Size Analyzer (Hialeah,
FL). Calibration for particle size was
conducted by using 50-�m beads using
the protocol suggested by the manufac-
turer. Particle number was calibrated
against solutions of pure salt water.
After pollen removal from plants, all
mature seeds were removed from each
shoot, and along with total shoot bio-
mass, oven-dried and weighed to the
nearest g�4. Shoot height was mea-
sured immediately before pollen re-
moval. Persons responsible for pollen
collection and measurements of parti-
cle counts and plant size, were not
blinded as to which CO2 environments
plants were grown in.

For all traits, including total pollen
production, mean pollen size, shoot
biomass, height, and seed weight, dif-
ferences between treatments were
evaluated with analysis of variance
that compared the effects of CO2 to the
larger of Block � CO2 and container-
to-container variation.

RESULTS AND DISCUSSION
We found that stand-level pollen pro-
duction was 61% higher in elevated
versus ambient CO2 environments
(F � 15.16, P � 0.005); however CO2

did not significantly influence the av-
erage size of pollen grains (Fig 1, A
and B). CO2-induced growth stimula-
tion of stand shoot biomass was similar
to that of total pollen production (63%,
F � 9.08, P � 0.017; Fig 1C). Both
shoot height and total seed mass were
also greater in elevated CO2 environ-
ments (9% and 31%, respectively);
however, these effects were not statis-
tically significant (P � 0.057 and P �
0.378l; Fig 1, D and E). Our observa-
tion of a CO2-induced increase in pol-
len production parallels the results re-
ported by Ziska and Caulfield,8 who

reported an even greater magnitude of
pollen increase. Similarly, our ob-
served CO2-induced enhancement to
shoot biomass is similar to average
species enhancements values (54%)
observed in surveys of fast-growing
wild plants.18

Detailed data on individual plant pol-
len production and reproductive devel-
opment were not investigated in this
study. Nevertheless, it is possible that in
addition to increasing stand-level pollen
production through increased plant size,
high CO2 may have resulted in plants
allocating proportionally more resources
to pollen relative to seed or total shoot
mass. Previous studies with ragweed
have shown that adding essential re-
sources to stands (eg, nitrogen) results
in plants investing in proportionally
more male versus female reproductive
structures.29 More generally, studies
with ragweed and other wind-polli-
nated species suggest that larger and
taller plants within populations tend to
be male more often.30,31

It will be challenging to accurately
predict the future threat to public
health caused by CO2-stimulated pol-
len production. As with most environ-
mental health issues, many factors are
involved, and in the specific case of cli-
mate change, the future state of many of
the factors themselves is uncertain.
Based on previous climate change stud-
ies evaluating the responses of plant
growth and yield, it is likely that plant
pollen production will also be influenced
by factors expected to change in concert
with CO2, including temperature, precip-
itation, and atmospheric pollutants.15,32,33

Over longer periods of time, these fac-
tors are likely to impact the relative
abundance and geographic distribution
of plant species,34 possibly altering the
demographics of populations currently
exposed to allergenic species. In fact,
recent models suggest that climate
change scenarios will favor the spread
of ragweed throughout Europe.35

CONCLUSION
Despite these uncertainties, our obser-
vation that a doubling of the atmo-
spheric CO2 concentration markedly
stimulates ragweed pollen production
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suggests that the incidence of hay fever
and related respiratory diseases may
increase in the future. Additional re-
search is warranted to more accurately
evaluate the future impact of allergenic
pollen on public health and to help
develop effective ecologic, public
health, and policy strategies for miti-
gating these threats.
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